Splenic stroma-educated regulatory dendritic cells induce apoptosis of activated CD4 T cells via Fas ligand-enhanced IFN-γ and nitric oxide.

نویسندگان

  • Xiongfei Xu
  • Hai Yi
  • Zhenhong Guo
  • Cheng Qian
  • Sheng Xia
  • Yushi Yao
  • Xuetao Cao
چکیده

Stromal microenvironments of bone marrow, lymph nodes, and spleen have been shown to be able to regulate immune cell differentiation and function. Our previous studies demonstrate that splenic stroma could drive mature dendritic cells (DC) to further proliferate and differentiate into regulatory DC subset that could inhibit T cell response via NO. However, how splenic stroma-educated regulatory DC release NO and whether other molecules are involved in the suppression of T cell response remain unclear. In this study, we show that splenic stroma educates regulatory DC to express high level of Fas ligand (FasL) by TGF-β via ERK activation. The findings, that inhibition of CD4 T cell proliferation by regulatory DC required cell-to-cell contact and FasL deficiency impaired inhibitory effect of regulatory DC, indicate that regulatory DC inhibit CD4 T cell proliferation via FasL. Then, regulatory DC have been found to be able to induce apoptosis of activated CD4 T cells via FasL in caspase 8- and caspase 3-dependent manner. Interestingly, FasL on regulatory DC enhanced IFN-γ production from activated CD4 T cells, and in turn T cell-derived IFN-γ induced NO production from regulatory DC, working jointly to induce apoptosis of activated CD4 T cells. Blockade of IFN-γ and NO could reduce the apoptosis induction. Therefore, our results demonstrated that splenic stroma-educated regulatory DC induced T cell apoptosis via FasL-enhanced T cell IFN-γ and DC NO production, thus outlining a new way for negative regulation of T cell responses and maintenance of immune homeostasis by regulatory DC and splenic stromal microenvironment.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Effect of Beta Interferon on Dendritic Cells and Cytokine Synthesis by CD4+ T Cells

Background: Dendritic cells (DC) are a key regulator of the immune response, and interferon- beta (IFN-β) is considered an immunomodulatory molecule for DC. Objective: The purpose of this study was to evaluate the ability of IFN-β treated DC to induce cytokine secretion by CD4+ T cells. Methods: Dendritic cells were generated from blood monocytes with granulocyte-monocyte colony-stimulating fac...

متن کامل

Interferon γ Eliminates Responding Cd4 T Cells during Mycobacterial Infection by Inducing Apoptosis of Activated Cd4 T Cells

In Mycobacterium bovis Bacille Calmette-Guérin (BCG)-infected wild-type mice, there was a large expansion of an activated (CD44(hi)) splenic CD4 T cell population followed by a rapid contraction of this population to normal numbers. Contraction of the activated CD4 T cell population in wild-type mice was associated with increased apoptosis of activated CD4 T cells. In BCG-infected interferon (I...

متن کامل

A subclass of dendritic cells kills CD4 T cells via Fas/Fas-ligand- induced apoptosis

Dendritic cells (DC), the most efficient antigen-presenting cells, are well equipped for activation of naive CD4+ T cells by their expression of high levels of major histocompatibility complex and costimulator molecules. We now demonstrate that some DC are equally well equipped for killing these same T cells. Murine splenic DC consist of both conventional CD8alpha- DC and a major population of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of immunology

دوره 188 3  شماره 

صفحات  -

تاریخ انتشار 2012